- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Cavallaro, Joseph R. (2)
-
Mohamed, Nadya A. (2)
-
Cavallaro, Joseph (1)
-
Mohamed, Nadya (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mohamed, Nadya; Cavallaro, Joseph (, Journal of Signal Processing Systems)
-
Mohamed, Nadya A.; Cavallaro, Joseph R. (, 2021 IEEE Workshop on Signal Processing Systems (SiPS))Sensors are used to monitor various parameters in many real-world applications. Sudden changes in the underlying patterns of the sensors readings may represent events of interest. Therefore, event detection, an important temporal version of outlier detection, is one of the primary motivating applications in sensor networks. This work describes the implementation of a real-time outlier detection that uses an Autoencoder-LSTM neural-network accelerator implemented on the Xilinx PYNQ-Z1 development board. The implemented accelerator consists of a fine-tuned Autoencoder to extract the latent features in sensor data followed by a Long short-term memory (LSTM) network to predict the next step and detect outliers in real-time. The implemented design achieves 2.06 ms minimum latency and 85.9 GOp/s maximum throughput. The low latency and 0.25 W power consumption of the Autoencoder-LSTM outlier detector makes it suitable for resource-constrained computing platforms.more » « less
An official website of the United States government
